Impaired expression of certain prereplicative bacteriophage T4 genes explains impaired T4 DNA synthesis in Escherichia coli rho (nusD) mutants.
نویسندگان
چکیده
The Escherichia coli rho 026 mutation that alters the transcription termination protein Rho prevents growth of wild-type bacteriophage T4. Among the consequences of this mutation are delayed and reduced T4 DNA replication. We show that these defects can be explained by defective synthesis of certain T4 replication-recombination proteins. Expression of T4 gene 41 (DNA helicase/primase) is drastically reduced, and expression of T4 genes 43 (DNA polymerase), 30 (DNA ligase), 46 (recombination nuclease), and probably 44 (DNA polymerase-associated ATPase) is reduced to a lesser extent. The compensating T4 mutation goF1 partially restores the synthesis of these proteins and, concomitantly, the synthesis of T4 DNA in the E. coli rho mutant. From analyzing DNA synthesis in wild-type and various multiply mutant T4 strains, we infer that defective or reduced synthesis of these proteins in rho 026-infected cells has several major effects on DNA replication. It impairs lagging-strand synthesis during the primary mode of DNA replication; it delays and depresses recombination-dependent (secondary mode) initiation; and it inhibits the use of tertiary origins. All three T4 genes whose expression is reduced in rho 026 cells and whose upstream sequences are known have a palindrome containing a CUUCGG sequence between the promoter(s) and ribosome-binding site. We speculate that these palindromes might be important for factor-dependent transcription termination-antitermination during normal T4 development. Our results are consistent with previous proposals that the altered Rho factor of rho 026 may cause excessive termination because the transcription complex does not interact normally with a T4 antiterminator encoded by the wild-type goF gene and that the T4 goF1 mutation restores this interaction.
منابع مشابه
Transcription and translation of prereplicative bacteriophage T4 genes in vitro.
Bacteriophage T4 DNA was used to direct transcription and translation in vitro in extracts prepared from uninfected Escherichia coli. The radioactive protein products of the cell-free reactions were examined on sodium dodecyl sulfate acrylamide gels. We conclude that the cell-free system prepared from uninfected E. coli has the capacity to synthesize most T4 prereplicative RNAs and proteins. Fu...
متن کاملControl of early gene expression of bacteriophage T4: involvement of the host rho factor and the mot gene of the bacteriophage.
Many early mRNA species of bacteriophage T4 are not synthesized after infection of Escherichia coli in the presence of chloramphenicol. This has been interpreted as a need for T4 protein(s) to be synthesized to allow expression of some early genes, e.g., those for deoxycytidinetriphosphatase, deoxynucleosidemonophosphate kinase and UDP-glucose-DNA beta-glucosyltransferase. In the experiments de...
متن کاملBacteriophage T4 inhibits colicin E2-induced degradation of Escherichia coli deoxyribonucleic acid. I. Protein synthesis-dependent inhibition.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we show that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with bacteriophage T4. At least two modes of inhibition may be differentiated on the basis of their sensitivity to chloramphenicol. The following observations o...
متن کاملGenetic and physiological studies of an Escherichia coli locus that restricts polynucleotide kinase- and RNA ligase-deficient mutants of bacteriophage T4.
The RNA ligase and polynucleotide kinase of bacteriophage T4 are nonessential enzymes in most laboratory Escherichia coli strains. However, T4 mutants which do not induce the enzymes are severely restricted in E. coli CTr5X, a strain derived from a clinical E. coli isolate. We have mapped the restricting locus in E. coli CTr5X and have transduced it into other E. coli strains. The restrictive l...
متن کاملAmber mutants of bacteriophage T4 defective in deoxycytidine diphosphatase and deoxycytidine triphosphatase. On the role of 5-hydroxymethylcytosine in bacteriophage deoxyribonucleic acid.
Infection of Escherichia coli B with T4 amber mutants in gene 56 fails to cause the appearance of either deoxycytidine trkghosphatase or deoxycytidine diphosphatase, and little or no DNA synthesis results. Infection of E. coli B with a 7:3 mixture of a gene 56 amber mutant and wild type T4 results in the appearance of only 30% as much dCTPase activity as normal but gives a 100% yield of mixed p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 171 7 شماره
صفحات -
تاریخ انتشار 1989